
National Conference on ‘Advanced Trends in Engineering Sciences &Technology-ATEST’ Organised by RK College of Engineering 526 

Rover Publications 

United International Journal of Engineering and Sciences (UIJES) 
An International Peer-Reviewed (Refereed) Engineering and Science Journal Impact Factor:7.984(SJIF) Volume-

4, Special Issue-3; ISSN: :2582-5887 

   
  

 

 

A Load Balancing of Hop-By-Hop Adaptive Link State 

Optimal Routing 

Mrs. D. Sudha Rani,
 
Mrs. B. Vijaya Sri 

Department of Computer Science and Engineering 

R.K College of Engineering, 

Vijayawada, India 

sudha.sathwika@gmail.com, vijaya.b81@gmail.com 

                                                                     DOI:10.53414/UIJES:2024.43.529 

 
Abstract – The goal of this work is to do away with the trade-off that exists between routing's optimality and implementation 

convenience. Thus, I put forth my hop-by-hop routing scheme, which iteratively converges to the best routing assignment while 

maintaining the simplicity of link-state, hop-by-hop protocols. This is the first ideal link-state hop-by-hop routing solution that 

we are aware of. Not surprisingly, creating such a solution presents a number of difficulties. For convenience of presentation, 

we define the following key words before delving into them. Moreover, our method is adaptive: when a quasi-static network 

changes, it will automatically converge to the new optimal routing assignment. Along with exploring more facets of the solution 

and outlining a proof-of-concept implementation report numerical and experimental evaluations to validate our theoretical 

predictions. 

 

Keywords – IP networks, load balancing, network management, optimal routing.  

 

I. INTRODUCTION 

Since the early 1970s with the advent of ARPANET, the predecessor of the Internet. Till today it is find that the 

different optimal routing algorithms developed over the last 40 years are seldom implemented. Routing term suggests the 

process of selecting best paths in a network. That means there are n numbers of ways to send a data packet from sender 

node to receiver node, the process through which we find the best path in terms of marginal cost and low traffic so that 

the cost of sending packet in network will be optimal. In early days the term routing was also used as means forward 

network traffic among networks. This has been fundamental research and practical interest from the early 1970s with the 

era of ARPANET, the predecessor of the Internet. Till today it is find that the different optimal routing algorithms 

developed over the last 40 years are seldom implemented. So, hop-by-hop packet forwarding supporting distributed link-

state routing protocols like OSPF/IS-IS are the dominant intra-domain routing solutions on the Internet. The reason 

behind the widespread distribution and adoption of link-state, hop-byhop algorithms has been their simplicity—here in 

algorithm main idea suggest to centrally assign weights to links based on input traffic statistics, then flood the link 

weights through the network, and then compute the shortest paths from the link weights and locally forward packets to 

destinations along these computed shortest paths. Because of rapid growth in our communication networks in size and 

complexity, this simplicity has helped OSPF to expand the boundaries of optimal routing techniques that are harder to 

implement. Ultimately this results into lost performance of this tradeoff [1,2,6]. Generally poor resource utilization 

results from OSPF. Network administrators are forced to overprovision their networks to handle peak traffic. 

Subsequently this resulted into on average, most network links run at just 30%–40% utilization. The problem become 

critical, when it realized that there has to be no way around this tradeoff 

The driving force behind the widespread adoption of link-state, hop-by-hop algorithms has been their simplicity—the 

main idea is to centrally assign weights to links based on input traffic statistics, flood the link weights through the 

network, and then locally forward packets to destinations along shortest paths computed from the link weights. As our 

communication networks have grown rapidly in size and complexity, this simplicity has helped OSPF eclipse extant 

optimal routing techniques that are harder to implement. 

However, the obvious tradeoff has been lost performance. For instance, due to the poor resource utilization resulting 

from OSPF, network administrators are forced to overprovision their networks to handle peak traffic. As a result, on 

average, most network links run at just 30%–40% utilization. To make matters worse, there seems to be no way around 

this tradeoff. In fact, given the offered traffic, finding the optimal link weights for OSPF, if they exist, has been shown to 

be NP-hard [4]. Furthermore, it is possible for even the best weight setting to lead to routing that deviates significantly 

from the optimal routing assignment [4]. 

 

1.0Hop-by-hop: Each router, based on the destination address, controls only the next hop that a packet takes. 

 

1.1Adaptive: The algorithm does not require the traffic demand matrix as an explicit input in order to compute link 

weights.  

mailto:sudha.sathwika@gmail.com
mailto:vijaya.b81@gmail.com


National Conference on ‘Advanced Trends in Engineering Sciences &Technology-ATEST’ Organised by RK College of Engineering 527 

Rover Publications 

United International Journal of Engineering and Sciences (UIJES) 
An International Peer-Reviewed (Refereed) Engineering and Science Journal Impact Factor:7.984(SJIF) Volume-

4, Special Issue-3; ISSN: :2582-5887 

   
  

 

 

Specifically, the algorithm seamlessly recognizes and adapts to changes in the network, both topology changes and 

traffic variations, as inferred from the network states like link flow rates.  

 

1.2Link-state: Each router receives the state of all the network’s links through periodically flooded link-state updates 

and makes routing decisions based on the link states. 

 

1.3Optimal: The routing algorithm minimizes some cost function (e.g., minimize total delay) determined by the 

network operator. The problem of guiding network traffic through routing to minimize a given global cost function is 

called traffic engineering (TE). 

The first design challenge stems from coordinating routers only using link states. This means that no router is aware of 

all the individual communicating pairs in the network or their traffic requirements. However, they still have to act 

independently such that the network cost is minimized. This is a very real restriction in any large dynamic network like 

the Internet, where it is not possible to obtain information about each communicating pair. If the link-state requirement is 

set aside, optimal distance-vector routing protocols have already been developed [2]. The idea there is to iteratively 

converge to the optimal routing assignment by sharing estimates of average distances to destinations among neighbors. 

However, distance-vector protocols have not caught on for intra-domain routing because of scalability issues due to their 

slow convergence and robustness issues like vulnerability to a single rogue router taking down the network as in the 

“Internet Routing Black Hole” incident of 1997 [5]. 

The hop-by-hop forwarding requirement presents the next challenge. As a result, a router cannot determine the entire 

path that traffic originating at it takes to its destination. Without this requirement, a projected gradient approach [6] can 

be used to yield optimal iterative link-state algorithms that can be implemented with source routing, where the path a 

packet takes through the network is encoded in its entirety at the source. However, the need for source routing means that 

these techniques are not practical given the size of modern networks. 

Another challenge arises because the optimal routing assignment changes with the input traffic and the network. There 

are two aspects to this problem. The first aspect is that the algorithm needs sufficient time between network and traffic 

changes to calculate and assign optimal routes. This requirement is typically captured by the quasi-static model of routing 

problems described by Gallager [2]. The second aspect is that the algorithm should smoothly adapt the routes to changes 

when they do occur. Thus, ideally, the algorithm should avoid global inputs that require additional computation when 

performing routing updates. However, the algorithm also needs some way to track the network state to compute efficient 

routes. Link rates fill this gap because they are widely available and easily accessible in modern networks. The first 

aspect is modeled by studying a static network with static input traffic in between changes in the network. If the second 

stipulation is set aside, recently, significant progress was made in this direction with PEFT, a link-state protocol with 

hop-by-hop forwarding based on centralized weight calculations [7]. However, since the link weights are calculated in a 

centralized manner with the traffic matrix as an explicit input, PEFT is not adaptive. Nor does it always guarantee 

optimality as claimed in the paper. 

II. PROBLEM FORMULATION 

Under the quasi-static model, the traffic engineering problem can be cast as a Multi-Commodity Flow (MCF) 

problem in between topology and input traffic changes.Wemodel the network as a directed graph G = (V,E) with 

node/router set and edge/ link set with link capacities Cu,v, ¥(u,v) € E . The rate required for communication from s to t 

is represented by D(s,t). The commodities are defined in terms of their final destination t. We use f 
t
u,v to represent the 

flow on link (u,v) corresponding to commodity t and f 
t
u,v  for the total flow on link (u,v). The network cost function,  

, is typically selected to be a convex function of the link rate vector 

f = { fu,v },¥(u,v) € E. Using this notation, the MCF problem can be stated as 

 

 
 



National Conference on ‘Advanced Trends in Engineering Sciences &Technology-ATEST’ Organised by RK College of Engineering 528 

Rover Publications 

United International Journal of Engineering and Sciences (UIJES) 
An International Peer-Reviewed (Refereed) Engineering and Science Journal Impact Factor:7.984(SJIF) Volume-

4, Special Issue-3; ISSN: :2582-5887 

   
  

 

 

A fact about MCF is that its optimal solution generally results in multipath routing instead of single-path routing [1]. 

However, finding the right split ratios for each router for each commodity is a difficult task. Our starting point is to 

merge the link-state feature of the source-routing protocols with the hop-by-hop forwarding feature of the distance-vector 

schemes. Another characteristic that we borrow is the iterative nature of these algorithms. Here, each iteration is defined 

by the flooding of existing link states through the network followed by every router updating its split ratios, which 

modifies the link states for the next iteration. In what follows, we measure time in units of iterations. With this idea in 

mind, in the time between network changes when the topology and the input traffic is static, we do the following. 

Iteratively adjust each router’s split ratios and move traffic from one outgoing link to another. This only controls the 

next hop on a packet’s path leading to hop-by-hop routing. If instead we controlled path rates, we would get source 

routing. 

 

Increase the split ratio to the link that is part of the shortest path at each iteration even though the average price via the 

next-hop router may not be the lowest. If instead we forwarded traffic via the next-hop router with the lowest average 

price, we get Gallager’s approach, which is a distance vector solution. 

Adapt split ratios dynamically and incrementally by decreasing along links that belong to non-shortest paths while 

increasing along the link that is part of the shortest path at every router. If instead split ratios are set to be positive 

instantaneously only to the links leading to shortest paths, then we get OSPF with weights, wu,v. 

III. GENERAL SOLUTION 

We begin by defining nt
u, the branch cardinality, as the product of the number of branches encountered in traversing 

the shortest path tree rooted at t from t to u. It makes sure that routers on the tree that are farther away from the 

destination shift traffic to the shortest path more conservatively than routers that are closer to the destination. At every 

iteration due to link-state flooding, each node u has the link-state information to run Dijkstra’s algorithm to compute the 

shortest path tree to destination t. Here, additional care is required because every node has to locally arrive at the same 

shortest path tree to ensure that the algorithm proceeds as expected. Therefore, at any stage, while running Dijkstra’s 

algorithm locally, if there is ambiguity as to which node should be added next, tie-breaking based on node index is used. 

In other words, if at any iteration there are multiple shortest paths to choose from, tie-breaking is used to ensure that all 

routers arrive at the same shortest path tree. The calculation nt
u of proceeds as shown in Algorithm1.  

 

 

IV. RELATED WORK 

Over the years, due to its importance, traffic engineering has attracted a lot of research attention. We provide a brief 

overview of major related results from different communities such as control, optimization, and networking. Broadly, the 

existing work can be divided into OSPF-TE, MPLS-TE, traffic demand agnostic/ oblivious routing protocol design, and 

optimal routing algorithms. 
The work on OSPF [4], [8], [9] has concentrated on using good heuristics to improve the centralized link weight 

calculations. Although these techniques have been shown to improve the algorithm’s performance significantly by 

finding better weight settings, the results are still far from optimal. 

Typically, these and other centralized traffic engineering techniques also require reliable estimates or measurements of 

the input traffic statistics in the form of a traffic matrix. While excellent work has been done in traffic matrix estimation 

from link loads, even the best results have errors on the order of 20% [10], which can lead to bad traffic engineering. 

Another approach is to directly measure the traffic to every destination at every router. While it is possible to globally 

aggregate the measurements into a traffic matrix that can be fed to a traffic engineering algorithm, it is more 

straightforward to use local measurements locally. Also, usually it is smoother and quicker to respond to changes locally 

when they do occur. Thus, we are advocating a shift to relying directly on link loads and local traffic measurements 

instead of computing a traffic matrix for traffic engineering.  



National Conference on ‘Advanced Trends in Engineering Sciences &Technology-ATEST’ Organised by RK College of Engineering 529 

Rover Publications 

United International Journal of Engineering and Sciences (UIJES) 
An International Peer-Reviewed (Refereed) Engineering and Science Journal Impact Factor:7.984(SJIF) Volume-

4, Special Issue-3; ISSN: :2582-5887 

   
  

 

 

A good way to avoid traffic matrices and a popular way to implement traffic engineering today is MPLS-TE [11], [12]. 

The idea is to compute end-to-end tunnels for traffic demands with the available network bandwidth being assigned to 

new traffic demands using techniques like Constrained Shortest Path First. However, here, the performance gained over 

OSPF comes at the cost of establishing multiple end-to-end virtual circuits. Moreover, as the traffic changes, the end-to-

end virtual circuits that were established for a particular traffic pattern become less useful, and performance degrades. 

Oblivious routing has also been proposed as a way around using traffic matrices for traffic engineering. The idea is to 

come up with a routing assignment that performs well irrespective of the traffic demand by comparing the “oblivious 

performance ratio” of the routing, i.e., the worst-case performance of the routing for a given network over all possible 

demands. Breakthrough work in this area includes papers by Applegate and Cohen [13] that developed a linear 

programming method to determine the best oblivious routing solution for the special case of minimizing maximum 

channel utilization and Kodialam et al. [14] that focused on maximizing throughput for the special case of two-phase 

routing. However, oblivious routing solutions do not adapt well to changes in the network. 

V. CONCLUSION 

In this paper, I developed the first link-state, hop-by-hop routing algorithm that optimally solves the traffic 

engineering problem for intra-domain routing on the Internet. Furthermore, we showed that based on feedback from the 

link-state updates, the protocol automatically adapts to input traffic and topology changes by adjusting router split ratios. 

We also provided guidelines on implementing my project by translating the theoretical model to a discrete 

implementation for numerical evaluations and then to a physical testbed built on NetFPGA boards. Importantly, although 

they did not satisfy the theoretical assumptions about continuous split ratio updates and synchronization between the 

routers, the numerical and experimental evaluations backed up our theoretical predictions about the performance and 

adaptively of this project. In terms of future directions, there are still interesting areas to be explored. For instance, the 

convergence rate of the algorithm needs to be analyzed. Another direction involves developing the theory behind the 

performance of algorithm in the absence of synchronous link-state updates and executions.  

REFERENCES 

[1] M. Wang, C. W. Tan, W. Xu, and A. Tang, “Cost of not splitting in routing: characterization and estimation,” IEEE/ACM Trans. 

Netw., vol. 19, no. 6, pp. 1849–1859, Dec. 2011. 

[2] R. Gallager, “A minimum delay routing algorithm using distributed computation,” IEEE Trans. Commun., vol. COM-25, no. 1, pp. 

73–85, Jan. 1977. 

[3] L. Fratta,M.Gerla, and L. Kleinrock, “The flow deviation method: An approach to store-and-forward communication network 

design,” Networks, vol. 3, no. 2, pp. 97–133, 1973.  

[5] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach, 5/E. New York, NY, USA: Addison-Wesley, 2010. 

[6] D. Bertsekas and E. Gafni, “Projected newton methods and optimization of multicommodity flows,” IEEE Trans. Autom. Control, 

vol. AC-28, no. 12, pp. 1090–1096, Dec. 1983. 

[7] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-hop forwarding can achieve optimal traffic engineering,” 

IEEE/ACMTrans. Netw., vol. 19, no. 6, pp. 1717–1730, Dec. 2011.  

[8] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic engineering solutions for current OSPF/IS-IS networks,” 

IEEE/ACM Trans. Netw., vol. 13, no. 2, pp. 234–247, Apr. 2005. 

[9] S. Srivastava, G. Agrawal, M. Pioro, and D. Medhi, “Determining link weight system under various objectives for OSPF networks 

using a lagrangian relaxation-based approach,” IEEE Trans. Netw. Service Manag., vol. 2, no. 1, pp. 9–18, Nov. 2005. 

[10] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate computation of large-scale IP traffic matrices from link 

loads,” in Proc. ACM SIGMETRICS, New York, NY, USA, 2003, pp. 206–217. 

[11] D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE Commun. Mag., vol. 37, no. 12, pp. 42–47, Dec. 1999. 

[12] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS adaptive traffic engineering,” in Proc. 20th Annu. IEEE INFOCOM, 

2001, vol. 

[13] C. E. Agnew, “On quadratic adaptive routing algorithms,” Commun. ACM, vol. 19, no. 1, pp. 18–22, Jan. 1976. 

[14] M. Kodialam, T. V. Lakshman, J. Orlin, and S. Sengupta, “Oblivious routing of highly variable traffic in service overlays and IP 

backbones,”IEEE/ACM Trans. Netw., vol. 17, no. 2, pp. 459–472, Apr. 2019. 


